\qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION(R\&S), DECEMBER 2019

Course Code: CS301

Course Name: THEORY OF COMPUTATION

Max. Marks: 100
Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks. Marks
1 Define nondeterministic finite automata(NFA). Draw the NFA for the language
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mid \mathrm{n}, \mathrm{m}>=1\right\}$
2 Convert the following NFA to DFA.

3 Write regular expression for the language $\mathrm{L}=\left\{1^{\mathrm{n}} 0^{\mathrm{m}} \mid \mathrm{n}>=1, \mathrm{~m}>=0\right\}$
4 Differentiate Moore machine from Mealy machine. Write the tuple representation for both machines.

PART B

Answer any two full questions, each carries 9 marks.

5 a) Write the notation for the language defined by a DFA. Write a string belong to
b) Construct NFA without $\epsilon-$ transitions from the following NFA. $\mathrm{M}=\left(\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right.\right.$, $\delta\left(\mathrm{q}_{2}, \epsilon\right)=\left\{\mathrm{q}_{1}\right\}, \delta\left(\mathrm{q}_{2}, \mathrm{a}\right)=\left\{\mathrm{q}_{2}\right\}, \delta\left(\mathrm{q}_{2}, \mathrm{c}\right)=\left\{\mathrm{q}_{0}\right\}$.
6 a) State Myhill-Nerode Theorem.
b) Minimize the following DFA.

$\boldsymbol{\delta}$	\mathbf{a}	\mathbf{b}
$\boldsymbol{P} 0$	P 0	P 1
$\mathbf{P 1}$	P 2	P 1
$\mathbf{P 2}$	P 3	P 1
*P3	P 3	P 4
*P4	P 5	P 4

Page 1 of 3

*P5	P3	P4

a) Construct regular expression corresponding to the following state diagram:

b) Design an ϵ-NFA for the regular expression $(0+1) * 01$

PART C

Answer all questions, each carries 3 marks.

8 Write the conditions for a pushdown automaton to be considered as deterministic.
9 Which are the methods to accept a string in a PDA? Whether both type ofPDAs can define the same language. Justify your answer.

10 Convert the following grammar to Chomsky Normal Form.
S-> 0S0|1S1| є
Whether the following grammar is ambiguous?
E-> E+E|E*E|I
I-> 0|1|a|b

PART D

Answer any two full questions, each carries 9 marks.

12 a) Verify that the following languages is not regular:
b) Which of the following operations are closed under regular sets. Justify your answer.
i) Complementation ii) Set difference iii) string reversal iv) Intersection
a) Give a CFG for the language $\mathrm{N}(\mathrm{M})$ where $\mathrm{M}=\left(\{\mathrm{p}, \mathrm{q}, \mathrm{r}\},\{0,1\},\left\{\mathrm{Z}, \mathrm{X}_{0}\right\}\right.$,
$\left.\delta, \mathrm{q}_{0}, \mathrm{Z}, \mathrm{r}\right)$ and δ is given by $\delta\left(\mathrm{p}, \epsilon, \mathrm{X}_{0}\right)=\left\{\left(\mathrm{q}, \mathrm{ZX}_{0}\right)\right\}, \delta\left(\mathrm{q}, \epsilon, \mathrm{X}_{0}\right)=\{(\mathrm{r}, \epsilon)\}, \delta(\mathrm{q}$ $, 1, \mathrm{Z})=\{(\mathrm{q}, \mathrm{ZZ})\}, \delta(\mathrm{q}, 0, \mathrm{Z})=\{(\mathrm{q}, \mathrm{\epsilon})\}$.
b) Find the Greibach normal form grammar equivalent to the following CFG:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AB} \\
& \mathrm{~A} \rightarrow \mathrm{BS} \mid 1 \\
& \mathrm{~B} \rightarrow \mathrm{SA} \mid 0
\end{aligned}
$$

14 a) Design a PDA to accept the language $\left\{0^{2 n} 1^{n} \mid n \geq 1\right\}$.
b) Find a CFG without ϵ-productions equivalent to the grammar defined by $\mathrm{S} \rightarrow \mathrm{ABaC}, \mathrm{A} \rightarrow \mathrm{BC}, \mathrm{B} \rightarrow \mathrm{b} / \epsilon, \mathrm{C} \rightarrow \mathrm{D} / \epsilon, \mathrm{D} \rightarrow \mathrm{d}$

PART E

Answer any four full questions, each carries 10 marks.

a) State Pumping lemma for CFLs. Write the applications of pumping lemma for 4 CFL s.
b) Check whether $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{i}} \mathrm{b}^{i} \mathrm{c}^{\mathrm{i}} \mid \mathrm{i}>0\right\}$ belong to CFL or not.6

16 a) Discuss about Multitape Turing Machines. Explain informally how they can
simulate the moves of a Turing Machine
b) Write a note on Universal Turing machines.

17 a) How to identify deterministic Turing machine from nondeterministic TM 3
b) Write notes on the following:
i) decidable and undecidable problems
ii) Halting Problem of Turing machine.

18 a) Write the properties of recursive languages and recursively enumerable 3 languages.
b) Write the Chomsky hierarchy of languages. Prepare a table indicating the 7 automata and grammars for the languages in the Chomsky Hierarchy.
19 a) Define Turing machine [Write the tuple representation for TM]. 5
b) Design a Turing machine to identify the strings belong to the language $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \quad 5\right.$ $\mid \mathrm{n}>0\}$.
20 Design the Turing machine to recognize the language: $\left\{0^{n} 1^{n} 0^{n} \mid n>=1\right\}$.10

